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“Big data” revolution?
A new scientific context

e Data everywhere: size does not (always) matter
e Science and industry
e Size and variety

e Learning from examples

— n observations in dimension p
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Visual object recognition
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Bioinformatics

e Protein: Crucial elements of cell life
e Massive data: 2 millions for humans

e Complex data
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e Large-scale machine learning: large p, large n

— p : dimension of each observation (input)
— n : number of observations

e Examples: computer vision, bioinformatics, advertising
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Context
Machine learning for “big data”

e Large-scale machine learning: large p, large n

— p : dimension of each observation (input)
— n : number of observations

e Examples: computer vision, bioinformatics, advertising
¢ Ideal running-time complexity: O(pn)

e Going back to simple methods

— Stochastic gradient methods (Robbins and Monro, 1951)
— Mixing statistics and optimization



Outline

e Introduction: stochastic approximation algorithms

— Supervised machine learning and convex optimization
— Stochastic gradient and averaging
— Strongly convex vs. non-strongly convex

e Fast convergence through smoothness and constant step-sizes
— Online Newton steps (Bach and Moulines, 2013)
— O(1/n) convergence rate for all convex functions

e More than a single pass through the data

— Stochastic average gradient (Le Roux, Schmidt, and Bach, 2012)
— Linear (exponential) convergence rate for strongly convex functions



Supervised machine learning

e Data: n observations (z;,y;) € X x Y, i=1,...,n, i.i.d.
e Prediction as a linear function (0, ®(x)) of features ®(x) € RP

e (regularized) empirical risk minimization: find f solution of

min ="y, (0,8(2)) + 40(0)

0 cRP

convex data fitting term + regularizer



Usual losses

e Regression: y € R, prediction i = (0, ®(x))
— quadratic loss 3(y — §)? = 2(y — (0, ®(z)))?



Usual losses

e Regression: y € R, prediction y = (0, ®(x))
— quadratic loss 3(y — §)? = 2(y — (0, ®(z)))?

e Classification : y € {—1,1}, prediction § = sign((f, ®(z)))

— loss of the form £(y (0, ®(z)))
— “True” 0-1 loss: £(y (0, ®(x))) = Ly (0,®(z))<0
— Usual convex losses:

5 T
— 0-1
4 — hinge
square
2 —— logistic




Supervised machine learning

e Data: n observations (z;,y;) € X x Y, i=1,...,n, i.i.d.
e Prediction as a linear function (0, ®(x)) of features ®(x) € RP

e (regularized) empirical risk minimization: find f solution of

min ="y, (0,8(2)) + 40(0)

0 cRP

convex data fitting term + regularizer



Supervised machine learning

e Data: n observations (z;,y;) € X x Y, i=1,...,n, i.i.d.
e Prediction as a linear function (6, ®(z)) of features ®(z) € R?

e (regularized) empirical risk minimization: find f solution of

mnin %Zf(yi,@@(%») +  pf(0)

convex data fitting term + regularizer
o Empirical risk: f(0) = I3 l(yi, (0, ®(x;)))  training cost
o Expected risk: f(0) = E(, ) {(y, (0, 2(x))) testing cost

e Two fundamental questions: (1) computing 0 and (2) analyzing 6



Supervised machine learning

e Data: n observations (z;,y;) € X x Y, i=1,...,n, i.i.d.
e Prediction as a linear function (6, ®(z)) of features ®(z) € R?

e (regularized) empirical risk minimization: find f solution of

mnin %Zf(yi,@@(%») +  pf(0)

convex data fitting term + regularizer
o Empirical risk: f(0) = I3 l(yi, (0, ®(x;)))  training cost
o Expected risk: f(0) = E(, ) {(y, (0, 2(x))) testing cost

e Two fundamental questions: (1) computing 0 and (2) analyzing 6

— May be tackled simultaneously



Smoothness and strong convexity

e A function g : R? — R is L-smooth if and only if it is twice
differentiable and
VO € RP, ¢"(0) < L-1d

smooth NON—SMOOt|

e
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Smoothness and strong convexity

e A function g : R? — R is L-smooth if and only if it is twice
differentiable and
Vo e RP, ¢"(0) < L-1d

e Machine learning

— Hessian & covariance matrix %Z?:l O(x;) ® P(x;)
— Bounded data



Smoothness and strong convexity

e A twice differentiable function g : RP — R is u-strongly convex if

and only if

VO e RP, ¢"(0) = p-1d

convex

/

A
strongly

convex
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Smoothness and strong convexity

e A twice differentiable function g : RP — R is p-strongly convex if
and only if

VO € RP, ¢"(0) = p-1d

e Machine learning

~ with g(0) = 1" £(ys, (0, ®(z:)))
— Hessian ~ covariance matrix %2?21 P(x;) @ P(x4)
— Data with invertible covariance matrix (low correlation/dimension)



Smoothness and strong convexity

e A twice differentiable function g : RP — R is p-strongly convex if
and only if

VO € RP, ¢"(0) = p-1d

e Machine learning

~ with g(0) = 1" £(ys, (0, ®(z:)))
— Hessian ~ covariance matrix %2?21 P(x;) @ P(x4)
— Data with invertible covariance matrix (low correlation/dimension)

e Adding regularization by %H@HQ

— creates additional bias unless p is small



Iterative methods for minimizing smooth functions

e Assumption: g convex and smooth on R?

e Gradient descent: 0, = 0; 1 — v, ¢ (0;_1)

— O(1/t) convergence rate for convex functions
— O(e™**) convergence rate for strongly convex functions




Iterative methods for minimizing smooth functions

e Assumption: g convex and smooth on R?

e Gradient descent: 0, = 0; 1 — v;g'(0;_1)

— O(1/t) convergence rate for convex functions
— O(e™ ") convergence rate for strongly convex functions

e Newton method: 0, = 0,_1 — ¢"(0,—1)"1¢'(0;_1)

t
— O(e %) convergence rate



Iterative methods for minimizing smooth functions

e Assumption: g convex and smooth on R?

e Gradient descent: 0, = 0; 1 — v, ¢ (0;_1)

— O(1/t) convergence rate for convex functions

— O(e™ ") convergence rate for strongly convex functions
e Newton method: 0; = 0;_1 — ¢"(0;_1) "¢’ (0;_1)

t
— O(e™"%) convergence rate

e Key insights from Bottou and Bousquet (2008)

1. In machine learning, no need to optimize below statistical error
2. In machine learning, cost functions are averages

= Stochastic approximation



Stochastic approximation

e Goal: Minimizing a function f defined on RP

— given only unbiased estimates f/(6,) of its gradients f'(4,) at
certain points 6,, € RP



Stochastic approximation

e Goal: Minimizing a function f defined on RP
— given only unbiased estimates f/(6,) of its gradients f'(4,) at

certain points 6,, € RP

e Machine learning - statistics

- f(0) =Ef,(0) =ELl(y,, (0,P(x,))) = generalization error
— Loss for a single pair of observations: f,(0) = {(y,, (0, ®(x,)))
— Expected gradient:

f'(0) =Ef,(0) = E {£'(yn, (0, 2(n))) D(z0) }

e Beyond convex optimization: see, e.g., Benveniste et al. (2012)



Convex stochastic approximation

e Key assumption: smoothness and/or strong convexity

e Key algorithm: stochastic gradient descent (a.k.a. Robbins-Monro)

Hn — en—l — Tn ff//z(en—l)

— Polyak-Ruppert averaging: 6,, = =5 >/ 0k

—

— Which learning rate sequence ~,,? Classical setting: | v, = Cn




Convex stochastic approximation

e Key assumption: smoothness and/or strong convexity

e Key algorithm: stochastic gradient descent (a.k.a. Robbins-Monro)

Hn — en—l — Tn ff//z(en—l)

— Polyak-Ruppert averaging: 6,, = =5 >/ 0k

—

— Which learning rate sequence ~,,? Classical setting: | v, = Cn

e Running-time = O(np)

— Single pass through the data
— One line of code among many



Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strongly convex: O((un)™1)
Attained by averaged stochastic gradient descent with v, o (un)~
— Non-strongly convex: O(n~1/2)
Attained by averaged stochastic gradient descent with v, xn

1

—~1/2
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— All step sizes v, = Cn~% with o € (1/2,1) lead to O(n™1) for
smooth strongly convex problems



Convex stochastic approximation
Existing work

e Known global minimax rates of convergence for non-smooth
problems (Nemirovsky and Yudin, 1983; Agarwal et al., 2012)

— Strongly convex: O((un)™1)
Attained by averaged stochastic gradient descent with v, o (un)~
— Non-strongly convex: O(n~1/2)
Attained by averaged stochastic gradient descent with v, xn

1
—~1/2

e Asymptotic analysis of averaging (Polyak and Juditsky, 1992;
Ruppert, 1988)

— All step sizes v, = Cn~% with a € (1/2,1) lead to O(n™1) for

smooth strongly convex problems

e A single algorithm for smooth problems with convergence rate
O(1/n) in all situations?



Least-mean-square algorithm

e Least-squares: f(0) = iE|(y, — (®(z,,),0))?] with § € R?

— SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
— usually studied without averaging and decreasing step-sizes
— with strong convexity assumption E|®(z,,) @ ®(x,)| = H = p-1d



Least-mean-square algorithm

o Least-squares: f(0) = sE|(y, — (2(z,,),0))?] with § € R?

— SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
— usually studied without averaging and decreasing step-sizes

— with strong convexity assumption ]E[CI)(acn) & CI)(:En)]

H > p-1d

e New analysis for averaging and constant step-size v = 1/(4R?)

— Assume ||®(z,)|| < R and |y, — (®(x,),0.)| < o almost surely

— No assumption regarding lowest eigenvalues of H

— Main result: | Ef(0,_1) — f(0,) <

n

n

_ do’p | 4R%|00 — 6.]

e Matches statistical lower bound (Tsybakov, 2003)

— Non-asymptotic robust version of Gyorfi and Walk (1996)



Markov chain interpretation of constant step sizes

e LMS recursion for f,,(0) = 1(yn — (®(z4,),0))

0, =60, _1— 7(<<I>(:z:n), On_1) — yn)CI)(acn)

2

e The sequence (0,,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,
. .= def
— with expectation 0., = [ 0r.(d0)



Markov chain interpretation of constant step sizes

e LMS recursion for f,(0) = %(yn — <(I>($n)79>)2

Hn — Hn—l — A}/(<(I)(xn)7 9n—1> - yn)q)(xn)
e The sequence (0,,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,
. .= def
— with expectation 0., = [ 0r.(d0)

e For least-squares, 0, = 0,

en f\ x
X — — — — — — ~ - - — —

/ / N /
| / AN /

I x - o p” 7

N 6 4
/ \)é\ * 0%
/ ~X N /X



Markov chain interpretation of constant step sizes

e LMS recursion for f,(0) = %(yn — <(I>($n)79>)2

Qn — Hn—l — A}/(<(I)(xn)7 9n—1> - yn)q)(xn)
e The sequence (0,,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,
. .= def
— with expectation 0., = [ 0r.(d0)

e For least-squares, 0, = 0,




Markov chain interpretation of constant step sizes

e LMS recursion for f,(0) = %(yn — <(I>($n)79>)2

Qn — Hn—l — A}/(<(I)(xn)7 9n—1> - yn)q)(xn)
e The sequence (0,,), is a homogeneous Markov chain

— convergence to a stationary distribution 7,
. .= def
— with expectation 0., = [ 6. (d0)

e For least-squares, 0., = 0,
— 6,, does not converge to 0, but oscillates around it
— oscillations of order /v

e Ergodic theorem:

— Averaged iterates converge to 0., = 0, at rate O(1/n)



Simulations - synthetic examples

e Gaussian distributions - p = 20

synthetic square

0
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Simulations - benchmarks
e alpha (p = 500, n = 500 OOO), news (p = 1 300 000, n = 20 OOO)

alpha square C=1 test

alpha square C=opt test

1 1
__ 05 0.5
0 0
|
o -0.5 -0.5
;8 _1' 5 _17 2
< -1.5 l/Rz 1/2 -1.5 C/Rz 1/2
—1/R"n —C/R"n
~2/| —sAG —2/| —sSAG
0 4 0 4
log, ,(n) log, (1)

news square C=1 test news square C=opt test

0.2} 0.2}

log[f(6)-f(6.)]

08| ___cac | 08| ___cac

2 4 2 4
log, ,(n) log, ,(n)



Beyond least-squares - Markov chain interpretation

e Recursion 0,, = 0,,_1 — ~vf!(0,_1) also defines a Markov chain

— Stationary distribution 7., such that | f/(6 Wv(dﬁ) =0
— When f’ is not linear, f'([ 0m,(df)) # [ f'(0)my(d0) =0
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— Stationary distribution 7., such that | f/(6 Wv(dﬁ) =0
— When f’ is not linear, f'([ 0m,(df)) # [ f'(0)my(d0) =0

e 0, oscillates around the wrong value 0., # 0,




Beyond least-squares - Markov chain interpretation

e Recursion 0, =60,,_1 —~vf/(0,,_1) also defines a Markov chain
— Stationary distribution 7., such that | f/(6 Wv(dﬁ) =0
— When f’ is not linear, f'([ 0m,(df)) # [ f'(0)my(d0) =0

e 0, oscillates around the wrong value 0., # 0,

— moreover, |0, —0,| = O,(\/7)

e Ergodic theorem

— averaged iterates converge to 0., # 0, at rate O(1/n)
— moreover, ||0. — 0, = O(y) (Bach, 2013)



Simulations - synthetic examples

e Gaussian distributions - p = 20

synthetic logistic — 1

l0g, [f(6)-1(6)]

A
log, (n)



Restoring convergence through online Newton steps

e Known facts

1. Averaged SGD with v,, oc n~'/2 leads to robust rate O(n~'/?)
for all convex functions

2. Averaged SGD with ~,, constant leads to robust rate O(n™!)
for all convex quadratic functions

3. Newton's method squares the error at each iteration
for smooth functions

4. A single step of Newton's method is equivalent to minimizing the
quadratic Taylor expansion



Restoring convergence through online Newton steps

e Known facts

1. Averaged SGD with v,, oc n~'/2 leads to robust rate O(n~'/?)
for all convex functions

2. Averaged SGD with ~,, constant leads to robust rate O(n™!)
for all convex quadratic functions = O(n—1)

3. Newton's method squares the error at each iteration
for smooth functions = O((n~=1/2)?)

4. A single step of Newton's method is equivalent to minimizing the
quadratic Taylor expansion

e Online Newton step

— Rate: O((n~Y2)2 4+ n=1) =0(n™1)
— Complexity: O(p) per iteration



Restoring convergence through online Newton steps

e The Newton step for f = Ef,(0) = E[l(yn, (0, ®(z,)))] at 6 is

equivalent to minimizing the quadratic approximation

),0 =) +5(0 -0, f"(0)(0 - 0))

g(0) = f(0) + (f'(0),
f (é)v 0 — 9> + %<9 - HvEf”(e)(e - (9)>

F(6) + (E
E|£(0) + (£1(0),0 = 0) + 5(0 — 0, £1(0)(6 — 0))|

™



Restoring convergence through online Newton steps

e The Newton step for f = Ef,(0) = E[l(yn, (0, ®(z,)))] at 6 is

equivalent to minimizing the quadratic approximation

™

),0 =) +5(0 -0, f"(0)(0 - 0))

g(0) = £(0) + (f'(0),
f1(0),0 — 0) + 30 — 0.Ef/(0)(6 — 0))

= f(0) + (E
= E|f(0) + (f,(0),0 — 8) + 30— 0, £1(0)(0 - 0)),

e Complexity of least-mean-square recursion for g is O(p)

On, = 01 — Y[ 2 (0) + F1(0)(8,—1 — 0)]

- fqlq,/(é) = 0" (yn, <9~, O (x,)))P(x,) ® ®(x,) has rank one
— New online Newton step without computing/inverting Hessians



Choice of support point for online Newton step

e Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain 6
(2) Run n/2 iterations of averaged constant step-size LMS

— Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
— Provable convergence rate of O(p/n) for logistic regression
— Additional assumptions but no strong convexity



Choice of support point for online Newton step

e Two-stage procedure

(1) Run n/2 iterations of averaged SGD to obtain 6
(2) Run n/2 iterations of averaged constant step-size LMS

— Reminiscent of one-step estimators (see, e.g., Van der Vaart, 2000)
— Provable convergence rate of O(p/n) for logistic regression
— Additional assumptions but no strong convexity

e Update at each iteration using the current averaged iterate

— Recursion: 9n = Hn_l — "}/[f,,/%((g_n_ﬂ + fg(@n_l)(en_l — Hn_l)]

— No provable convergence rate (yet) but best practical behavior
— Note (dis)similarity with regular SGD: 0,, = 0,,_1 — vf] (0,,_1)



e Gaussian distributions - p = 20

log, [f(6)~f(6,)]

Simulations - synthetic examples

synthetic logistic — 1

log, [f(6)~f(6,)]

synthetic logistic — 2

-3 ——every 2°
| — every iter.

~4 — 2—-step

5l 2I—step—dbll. |
0 6

4
log, (n)



Simulations - benchmarks
e alpha (p = 500, n = 500 OOO), news (p = 1 300 000, n = 20 OOO)

alpha logistic C=1 test

05 05 alpha logistic C=opt test
0 0
o -0.5 -0.5
T
e  lfj—ur? ~1f—c/r?
o — 12,112 - 2 1/2
= —-1.5} 1/R°n -1.5¢ C/R"n
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— Newton — Newton
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0 4 0 | 4
log, ,(n) og, (n)
news logistic C=1 test news logistic C=opt test
0.2 | f 0.2{)/X :
0 0
S -0.2 —0.2
|
S -0.4(—1/R? -0.4
o — 12,112 - 2 1/2
GJH -0.6} 1/R°n -0.6} C/R"n
o —SAG : ——SAG
—0.8{| —— Adagrad| ’ —0.8}| —— Adagrad
_1l —Neyvton : _1} —Neyvton
0 2 4 0 2I 4
log, ,(n) og, ()



Going beyond a single pass over the data

e Stochastic approximation

— Assumes infinite data stream
— Observations are used only once
— Directly minimizes testing cost E, ,) £(y, (0, ®(x)))



Going beyond a single pass over the data

e Stochastic approximation

— Assumes infinite data stream
— Observations are used only once
— Directly minimizes testing cost E(, .y £(y, (0, ®(x)))

e Machine learning practice

— Finite data set (x1,Y1,...,%n, Yn)

— Multiple passes

— Minimizes training cost = >"" | (y;, (0, ®(z;)))

— Need to regularize (e.g., by the ¢5-norm) to avoid overfitting

e Goal: minimize g(f) = %Zfz(ﬁ)
i=1



Stochastic vs. deterministic methods
e Minimizing g(6 Zfz ) with f(0) = €(y;, (0, ©(x;))) + p(0)

e Batch gradient descent: 6; = 0;_1—~;9"(0;_1) = 6,_ 1——Zf (0;_1)

— Linear (e.g., exponential) convergence rate in O(e~ %)
— Iteration complexity is linear in n (with line search)



Stochastic vs. deterministic methods
e Minimizing g(6 Zfz ) with f(0) = €(y;, (0, ©(x;))) + p(0)

e Batch gradient descent: 6; = 0;_1—~;9"(0;_1) = 6,_ 1——Zf (0;_1)

— Linear (e.g., exponential) convergence rate in O(e~ %)
— Iteration complexity is linear in n (with line search)

e Stochastic gradient descent: 6; = 0;_1 — fytfi’(t)(et_l)

— Sampling with replacement: i(¢) random element of {1,...,n}
— Convergence rate in O(1/t)
— Iteration complexity is independent of n (step size selection?)



Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 1 =1,...,n
— Random selection i(t) € {1,...,n} with replacement

- (0 if o =1(t
— lteration: 0y = 0,1 — L g y; with y! = fi( 1t % ( |
n < Y, otherwise



Stochastic average gradient
(Le Roux, Schmidt, and Bach, 2012)

e Stochastic average gradient (SAG) iteration

— Keep in memory the gradients of all functions f;, 1 =1,...,n
— Random selection i(t) € {1,...,n} with replacement

- (6 if 1 =1a(t
— lteration: 0 = 0,1 — L g y; with yf = fi( 1t % ( |
n = Y, otherwise

e Stochastic version of incremental average gradient (Blatt et al., 2008)

e Extra memory requirement

— Supervised machine learning

= If fi(0) = €i(yi, (®(2:),0)), then fi(0) = €i(yi, (P(z:),0)) (i)

— Only need to store n real numbers



Stochastic average gradient - Convergence analysis

e Assumptions

— Each f; is L-smooth, 1 =1,....n

— g==<>"" | fiis u-strongly convex (with potentially u = 0)
— constant step size v = 1/(16L)

— initialization with one pass of averaged SGD



Stochastic average gradient - Convergence analysis

e Assumptions

— Each f; is L-smooth, 1 =1,....n

— g==<>"" | fiis u-strongly convex (with potentially u = 0)
— constant step size v = 1/(16L)

— initialization with one pass of averaged SGD

e Strongly convex case (Le Roux et al., 2012, 2013)

E[g(6:) — g(0.)] < (if - 4LH90n_9*H2> exp ( — tmin {81n’ i67))

— Linear (exponential) convergence rate with O(1) iteration cost

. I nu
— Aft , reduct f cost b (— ' {—,—})
er one pass, reduction of cost by exp min 3 16 L



Stochastic average gradient - Convergence analysis

e Assumptions

— Each f; is L-smooth, 1 =1,....n

— 9:%2?:1 fi is p-strongly convex (with potentially = 0)
— constant step size v = 1/(16L)

— initialization with one pass of averaged SGD

e Non-strongly convex case (Le Roux et al., 2013)

O'2 + LHHQ—H*HQ n
NG /

— Improvement over regular batch and stochastic gradient

E|g(6:) — g(0)] <48

— Adaptivity to potentially hidden strong convexity
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Conclusions

e Constant-step-size averaged stochastic gradient descent

— Reaches convergence rate O(1/n) in all regimes
— Improves on the O(1/4/n) lower-bound of non-smooth problems
— Efficient online Newton step for non-quadratic problems

e Going beyond a single pass through the data

— Keep memory of all gradients for finite training sets
— Randomization leads to easier analysis and faster rates

— Relationship with Shalev-Shwartz and Zhang (2012); Mairal (2013)
e Extensions

— Non-differentiable terms, kernels, line-search, parallelization, etc.
— Beyond supervised learning, beyond convex problems



References

A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. Information-theoretic lower bounds

on the oracle complexity of stochastic convex optimization. Information Theory, IEEE Transactions
on, 58(5):3235-3249, 2012.

F. Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic
regression. Technical Report 00804431, HAL, 2013.

F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence
rate o(1/mn). Technical Report 00831977, HAL, 2013.

Albert Benveniste, Michel Métivier, and Pierre Priouret. Adaptive algorithms and stochastic
approximations. Springer Publishing Company, Incorporated, 2012.

D. Blatt, A. O. Hero, and H. Gauchman. A convergent incremental gradient method with a constant
step size. SIAM Journal on Optimization, 18(1):29-51, 2008.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Adv. NIPS, 2008.

L. Gyorfi and H. Walk. On the averaged stochastic approximation for linear regression. SIAM Journal
on Control and Optimization, 34(1):31-61, 1996.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence
rate for strongly-convex optimization with finite training sets. In Adv. NIPS, 2012.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence

rate for strongly-convex optimization with finite training sets. Technical Report 00674995, HAL,
2013.



O. Macchi. Adaptive processing: The least mean squares approach with applications in transmission.
Wiley West Sussex, 1995.

Julien Mairal. Optimization with first-order surrogate functions. arXiv preprint arXiv:1305.3120, 2013.

A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley
& Sons, 1983.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM Journal
on Control and Optimization, 30(4):838—-855, 1992.

H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Statistics, 22:400-407,
1951. ISSN 0003-4851.

D. Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Technical Report
781, Cornell University Operations Research and Industrial Engineering, 1988.

S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss
minimization. Technical Report 1209.1873, Arxiv, 2012.

A. B. Tsybakov. Optimal rates of aggregation. In Proc. COLT, 2003.
A. W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge Univ. press, 2000.



