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Motivation

® Data analysis:

® studied in machine learning, data mining,
statistics

® Thousands of tools, methods, algorithms,

® Millions of (slightly) different kinds of tasks

® How can a data analyst choose optimally?




Tasks & methods
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Variety in tasks

e Categories: Classification, regression, clustering, association rules,
reinforcement learning, ...

® Within each category:
® semi-supervised; multi-label; multi-instance; ... classification
® |earning from i.i.d. data, trees, sequences, graphs, ...
® transfer learning
e different target criteria (e.g. for clustering)
® exploiting background knowledge

® constraints imposed on solutions




Variety in tools

E.g., classification: decision trees, rules,
random forests, SVM, Naive Bayes, logistic
regression, ...

E.g., clustering: k-means, EM, single linkage,

spectra

They al

clustering, ...

have their own bias

Which one to use for a particular task?
How to set the parameters?




® The best way to address this variety of
tasks is to make it possible for the user to
describe the task, not the approach

® This is the basic mantra of declarative
programming




Compare to SQL

SQL was a huge leap forward for databases

Before SQL: program the retrieval procedure
yourself

With SQL: formulate the question in domain
terminology; database system determines
optimal execution strategy

SQL made retrieval easier and more efficient

Data mining is still at the “pre-SQL” stage




Motivation, part 2:
correctness

® |t is easy to use data mining tools
incorrectly, or interpret their results
incorrectly

® This holds even for basic statistical
methods!




Experimental evaluation
in machine learning

® Researchers propose new methods, and experimentally
evaluate them

® Very often, statistical significance tests are used to show
“significant” improvements

® These tests are often used incorrectly
® See, e.g., Dietterich 1998; Demsar 2006; ...

® The more advanced statistical tests become, the less
users understand them, and the higher the risk of

mistakes

® E g, independence assumptions often violated




Example: cross-
validation

® Standard deviations reported in a cross-validation = ?

® stdev of individual fold estimates!?

® deviation of estimated accuracy from true accuracy?
® Bengio & Grandvalet, 2004: no unbiased estimate of variance of CV
® So, whatever these stdevs are, they are not the ones we want

® Hence, P-values, significance tests, ... make no sense!

Method A

Method B

Method C

Dataset 1

0.86 (0.02)

0.83 (0.01)

0.82 (0.01)

Dataset 2

0.85 (0.01)

0.91 (0.01)

0.82 (0.03)

< acc (stdev)




Statistics is tricky

® There are many subtle issues in statistics

® Personal opinion:VVe should not leave
computation & interpretation of statistics
to the user

® |deally, build it into the system




Data analysis
as It IS now
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Data analysis
as it should be
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Steps towards
declarative data analysis

® Relevant fields:
® |nductive databases
® Query languages for data mining
® Modeling languages for data mining (2010-)
® Constraint-based data mining
® Meta-learning

® FEvaluation procedures




This talk

® This talk: some illustrations of

® declarative query languages for data
mining

® declarative modeling languages for DM
® declarative statistical inference

® subleties in interpretation of DM results




A declarative language
for clustering

® An example of integrating “clustering
queries’’ into database languages

® Ongoing work

sm. ECMLPKDD 2013 demo.




SCCQL

ld | Mutant | LengthMean | WidthMean
L 0
2 0
Rel. 3 0
D B 4 1
9 1
6 1
CLUSTER LengthMean,WidthMean
FROM (SELECT c.Id, .Mutant, AVG(s.Length) AS LengthMean,
AVG(s.Width) AS WidthMean SUSET7 GSES G2

FROM stateovertime s, cell c, lineage |

WHERE |.Experimentld=5 AND c.Lineageld = |.Id AND s.Cellld = c.ld
GROUP BY c.id) AS data

WITH SOFT MUST LINK WHERE data.Mutant=0 BY Mutant

Cluster according to mean length &
width, using as soft constraint that all
“Mutant 0” should be in one cluster.

data to be clustered.




Constraint-based
clustering

e Difficult for user: choose clustering algorithm,
distance metric, parameters

® Often easier: show pairs of instances that “must/
cannot link”, or show example clusters

® This motivates constraint-based clustering
® Pairwise constraints: multiple approaches

® Whole clusters as examples

A

Pan Hu, Celine Vens, Bart Verstrynge, Hendrik Blockeel.
Generalizing from Example Clusters. Discovery Science 2013: 64-78
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Pan Hul2, Clin Vens!, Bart Verstrynge!,and Hendrik Blockeel Calos Yo P&t Yoons <‘nt;fjg¢-‘k:y~lw' Colino Vens' and Fabricio Costa!

Biusda P CotaLsnier S, et Gont,Cee Vs, Cas ¥

S — i A oot T oo ad T B i e et K€U L Cot ot 0%, 201 L, Bt
mmmurum 3001 Les \\er‘nmm PR R MO et LEendrliBoces) Can s i ’”‘”""‘*” - * INRA, 400 route .h-‘rh.m BP 167, 06903 Sophia Autipolis, France
| Eeoe dos Mins S e * Department of Computer Scknce, KU Lewven, Celostjnenlaan 2004, 3001 Leuven, {celine.vens, fabrizio.costalca.kulewven.bo
Lo o et G S e
N B - 1A o T e 5 ; oS
ST L Sl s o e e e et I e e
Dt i Sy i, o Coui
Aot Y i ol i G o s o S5l oy A S T 0 o S, e e Skt e e by o e
S "m""“" e ate Il Gt Colombi problen, bt e from dhose tha v e studhod il . We argu ha i oscurs ey n
s W’ PREJSEST Eio, 3. Bratl [ k eruel feature space). Moreover, exploiting the properties of random for-
e h\wm‘r‘ e can deal in & matural way with missing values and obtain
sigaificant ways. Earler work has shown that none of the existing methas for idenity- e improvemen. -
e 5 S dep ul nt 4. Gram marices um can be used by any sub-
shis, which are relatcd 1o the defual metric caming methods not working wellin- ystract. Transposable o mmn- A sequences dhat ¢ - g
= - I e e ; T e o e e o o o
nd e e e that I s it ovcrtin, Exprine- et - e - B e e an ey e m e sl dotae
i o Sk S e sty it xSk o i e : e BT,
tant step towards. mnhnumrhm.uw offocts on gones. i v b e e
Koo s e i g, Coseio b Co- e ot T !
o - P S e sty o it B o e i i st e ST T
N kst SIS S AT it o s o e s aiable, e pe
iy ks ‘.,'.7» e o S T [ R e e pervisd clasifcation, 0 lustering algorithms as K-ncans [2 or unsupervisd
The task of cluscring daia is ubiquitos in knowlde discovery. Pariioal or non- ’ il s o b 1h e csr G ey S tasks or mult-dlmensional scallng (3 fo¢ visualaation o pre processng.
A T A At i A e e S
i e o e i e e 1 e s S i e SH oo s ot gt o 13 Sippon Ve i, e e
e e ey i T e e . 1 st o & st g s Sty
e S e et s i o T e Do il st T iy f e o e e o i i e o T R
i3 o 1 Introduction 10 e fct ot clueing i el wreon-  wok on sem-supevioed cisring (Section ). We a2 one can "r""f one ot e ofthe e,
i e e e e S e i ;:
" Aspoltaton i ;e v i s e
WA Transpasable clements (TEs) are DNA sequences hat can change their location T gy B e o e e S 0 o s i 15 P o] el 1 i ; ‘,‘. . .
e e s e i i vy o B it e oy Bt g e F
{Claas 1 Tis) o ct-an-pasts, (Clsa 11 TEo) mechanians. T ke . g Al ey St »wmmh o S o the true hypothesis class turns out to lized method:
portion of the in eukaryotic organisms and contribute to genetic diversity stractare may occur in diffrent ion oncluds in Section oa b e
s ber st T e o s sein s called st sopenied st 5 e DA o = e P e e Ko e o b ad the
or e e T T e T e e LiLes Fuoin se Lo e icvant o fo he ur (A gramal s 2005 i
it e o s et o S nwww-rl R T o e o s, et e et g e i
mmin oF alla] m,mm.m i i e ,m..m R e annot ortan step towards widestanding their effcts o rang o 3 s e i S =— s
stances whether they should (not) be in the same cluster. Vens et Ill\mnmly in- genes and [y genome f\“‘"\“m\ \ -l Although a variety of methods have been developed for this task, many of
Currently, annotation of TEs involves a fair amount of manual labar. Auto- ter occurmences of authoe names on papers such thal 1o n diffrent ways, .. “Joha Smih”, "L Smith” the propased techniques are applicable only in transductive settings ([7], (8],

ot iy il st el sk penviae ekt vih o

mate et cxit thn crsn DNA fo carcdate TEe, bt uan smmottors

R. W. Smith

Robert Smith

Robert Smith Bob Smith

Tdentifying Proteins Tnvolved in Parasitism by BIOINFORMATICS e
Discovering Degenerated Motifs

Iden Dllcnmmmw Classification Based Motifs in
Elalﬂglcnl Sequer
o Vone 2, s ey s e G- Darin

(Cline Vs, Erione Dancin?, and Mare-Noglle Rosso*

Determining which authors are the same
- clustering author occurrences

Desten ofComptr S K Ut L
i 208, 01, B e e
S M;w. s o e

ot Nl d'ta e Agromombe
100 ot d (‘Mn B 167 03 Sl Al G e
(etsemne asncvin,rossl

L8 litzpductiony amer e ———
B e e e b A s e e o My s Ll
Protin i n the sme il som or sl ftion (¢ e =
S e e s ams T Pl . ety sy i e iy S
o s chonasy s, uncioal prics €t bave an oicons o i " —_— . — .
proten scquence vl Ficing oot pocic  protns vl i the oo =5 B o e e g e e s O il S g singie AN tre (v e pecictions o al s toether)
i el e h et s s o w0 T
o kg o ey e ki screh ekl ke et
e e i g sl o e ot e ke b e o e e T, S
55 it (14 e  Fae ot oo i e e e 0
Pty . . . .
i,
£ can o in o o, AL & gven prtion i the e e .
e sl e ot of i ficingeerd o= b -
Conserved thn the i acid el st TS . . V4

W ot o o ey e motls b btk s TR et i
wmical propertes ofthes:

1 WTRODUCTION 'II»‘TJ‘L,;TLTJM,» o .m"“v‘l‘flnmw "

keywords, ... What works best?

o e i st Lo b e 2 g s Ty b i

e e S e ot g il i f evhion g, d e o g i it ch
PR S R S

clsses are orgauia in o bierarchy: an examplo that belongs o somo clas -

7 o nomeids i e (1, ol g ng s s alow Lol
paraste 1o eutr the plnt)

Robert L. Smith B.W. Smith Robert L. W. Smith Bob L. Smith



(Slide by Celine Vens)

ENTITY RESOLUTION

s

.

Generalizing from Example Clusters

Pan Hul2, Clin Vens!, Bart Verstrynge!,and Hendrik Blockeel

C»kmymn\wn m bl e o
Lot b of et o Sk

Sipifeun ways. Eatict ek s show it o of e exaing etods o

(i which r et 0 he et e eaming mthod ot vorking well i

e e ot il s et it Exine-
sl contmtht the e cthod seerlns much bt Seve) oter
ol enied e e pen.

Keywords: Clsrng, Se supesd Costring. Constiiosbsed Clastr

1 Introduction

The task of clustrin data i ubiguitos in knovledge discovery. Partiional (o non

2t stk it e i e e s 0 e s

W nstances i diffesen clusters issimilar. The notion of “similarty” s srucal

ber: depeding o b i 1 e, et shdons will e found:Thi e
especially for

e 1)

i ot alvays oy For sr 0 e god sty s Foweer, s

et the moton of similrty that the wer has in mind, 4 355 consqence produce

et clusteing. This type o clusteing seting i clled semi suprvisedchustering
or constrant based clsierng, 2 the wser givs panal information shou the desred
lastering in the form of contsints tha the chstering st Full.

Mot exising methods for semisupervised custering allow th use to povid
b of so-alld st fink s canno-fink consrsnts, indictin for pars of i
stances whethe they should (o0 be n the same cloter. Vens tal.[11] rceatly in-
Iroduced 3 lighl diferent settin, calld " supervised clstring with example

Robert Smit

(

\&

Tdentifying Proteins Tnvolved in Parasitism by
Discovering Degenerated Motifs

(it Vs, Evionne Danchin?, and Mare-Noélle Rosso*

ot o
0 ot o e, 571
(etsemne asncvi,rossl

1 Tntroduc

ot n gl e s ot clge i i
Pt o . the s xstem or physiolgieal fnction (<5

i Uh icaotoiml et Nl imaducier] Rotsbins
o s clonaey s, uncioal prics Cat bae an ovicans o i
protin squence Iovel. Finding motfsspeific 0 proeins ol 1 th somo

proces can i
i e oot o el et gl s
To our et )l Girntly mallabl melhods search ot i proten
itk e et ek e o e
i3 1 fln v, 1) Hwen o St i
more mporant

v i
A can O i v, g oo i e
e matiro and phyaes chemical proparicn o A Actd I protan sl s
ore v s e i s el

W propose a method that allows 1o denify merging moits basod both
e el g of e
s, Given .5t f proein squences kaown o b ol 1 comion

e ok 10 b

it e e . i s il et o abset I negaive
spenees. The identified motiscan then b s 0 mine the wealth of potin
et e vl et L Pl vncsaciriznd otk
ol n bokgicl processes of mportace

In this work. the biclogiel system of terst i the protein secrtion of
it e e [rpda). T ot i, o
It 5 e o e, sl o e o
pirtan . T (ks cotet, s opartan t iy e ot et
e Sl e S Rty ot i
paraste 1o eutr the plnt)

J

Annotating transposable elements in the genome
using relational decision tree ensembles

Biuardo P Gt Lo Sty Rerdo Cor?, Gl Yo, arka N
ischer?, Claudia M A Cararetot, Jan Ramon’, and Hendsik Blockeel

* Deptmn f Compter Sk, KU e, Colesasn 208, 901 L

P,

G, 55071 o,

? Depurt i, Appl it Cope Sl s

Sio Pl Stte Uy Aveidn 244, 11 i 15505500 o v, 5P, D

Dt of ity UNES? S Pl Stoe Ui, Crti Colorion
226, T051000 S ook ds i Prto, S, el

e

Abstract. Transposable clements (TES) are DNA soquances hat can
o i oo wihin he genn. Thy ks up s poros
of the DNA i culryotic orgamiera and contribute to gencic dver

e
s Coilion YWe koo ek fx stoing TEdrich 3

o i cutperort w0 abe-oGUbinst sy o TE saation.

Keywords: eltiona deciion trees, hidden Maskov models, genome
Snmoadon, aasposable et

Introduction

s comts (TES) are DNA e . con changs o oo
within the genomme. ThS ransposition process i carried out by  copy-aad-pas
(Class I TES) or cut-and-paste (Class 11 TES) mechanisin. TEs make u
porionof tho DXA n ekt s e
within and across species Furthermore, ther transposin
W e e e
thon ofTEs gl i he development o crprtale models explning
o ations, is n important step foards understanding ther efects o
B vl [

Curenl,sotation of TEs il i amount o maneal abor. Aute-

'DNA for candidate TEe, b

Bob Smith

BIOINFORMATICS wonrs m

Identifying Discriminative Classification Based Motifs
Biological Sequences
Goin Vs, MrieNodl s and Erne .. Darhin’

e 200, 200
R Ao, LA |5 A ASA S
B 17003t o e

1 wrRooucTIon e et o

LR AT Ll e 1 L

Semi-supervised Clustering with Example Clusters

el Ve Bt Versyge e ek Bk
femsim i it s o

i v
s e s,
e s oD o s o i K o, e o sy

ey, bowenr \umcmwnhhu«ﬁwmudmwnn e chnters can be s o i
e i e e Weeai's  Commg b iy o B

s

s o o
il e showd b same sur s G, e e e o

i S e oo e vl e i

o O ol L Ty bl G i g k- Wty s e
it e Tl e T et ki e e
. e ey by “Good” CHCHRES 8 bt e U e i, ol o Skt e

e chusings  any deen vl of gl \ry A o it Gk (St 31 We pogs

Al Ao e o e (S ! el i n S
Sraciare may ceu n e e, 2 he 5 We conlue e

rang o o i e . T e

R. W. Smith

\

=)

Top-down clustering for protein subfamily
identification
o PGost, etn Vers,and HenkBockol™

iy e s e it oo o

1 monucron

g ) o G S s s ity (it B
S SIS g e i
" 2 memoos

Sppresch ders o e, chorng meods 21 Proposed mainod

s v e e o

Learning Kernels with Random Forests

Colne Vst and Fbricio Costal
& KU Laon, Cotenan 200 01 Lawe, e
= INTA, 400 rnte des Chappus, B 167, 0303 S ol e P
(coTina. e, £abeisio coreadcs. klon

Abstract. Wo propeco s simpl et elftie srategy 1o lear Krnel

e presete e ot it he v e e .

Norene
Sl e e e s
pendent Gra s i e

Gt

senis el Kareing g © provide an extenve

ol sy of e et o iho loared lnel cver e and
il datae

1 Introduction

sk e ciing v ctcntion I e lchine Learing comm
O R e vl e o it o
from the nearet 1] for s
pervised claseification, to clustoring algorithms as K-means [2]for msuporvisod
tasks o lti-dimensional scalin 3] for visvllzation o pro-processng,

J et docade o o cxclnt sl peroranes -
bl st Oy e B
e e M e
rater than the distance fnction, althangh the two tasks ate ntimately elated
ol o oo e the e

Aspiton s vt i e ] ad ks v
{6 rsults, one can hope n efctive learing only when some prior sssumptian
s e e

ces nstances ouly hrongh the Kernel funceon. the matching between the
rior bins and the true hypothesi from the keruel functon itscll
T 4 the authors propose t0 use the ntion of target alignment o mensue the
qualit of uch match. In practie one s iterested i obtoning krrnel fonctions
e e L e S At R e
consideraton.

“Although a vasety of methods have been developed for this task, many of
the propased techniques are applcable only in transdctive setings (7). (8.

Robert Smith

Decision Trees for

Hierarchical Multi-label Classification
e V' S

[m— et e i Dot

Department of Compotee S, Ktk Upversteie Lau
Coletpenlaan 20, 501 Levven, Beiom.

e o Ko Tl ot Si e
oy . Lo, s

Abtract, eraecica bl clsietion (DC) i 8 oo of
o s s e 0 e v e
i e ez ey umuurhp«-m

BN et o i
et HAAD o rm b el o el

1 Introduction

oot it S S e
modl that the class of previowsly wnsen st erachical
it nbel caslcaton (UDIO) s o ormal estion i 0
(1)  single xaumple may blong to mnliple clses svltanconsy: ane (2) the
chuaes cecrpanie] 1 sy an sxaaple ha beongs o e s

Robert L. Smith B.W. Smith Robert L. W. Smith Bob L. Smith

Example clusters are easy to provide

(complete publication list of one author)




(Slide by Celine Vens)

ENTITY RESOLUTION

’ \ 7 et i Sl (e ‘

Generalizing from E le Clusts
F R T e using relational decision tree ensembles

\

Learning Kernels with Random Forests

Pan Hu'2, Celin Veas', Bar Verseynge!,and Headrik Blockeel! Colne Vst and Fabrisio Costal
Baduardo P Cta, LeanderScictt', Ricndo Cor, Clne V!, Carks N

KU Leen,Deparcent of Compoer Sciencs, e s MK Cotorebot aal Racoac ot Hendiolk Blaskeet KU Louven, Colostijentaan 200A, 301 Lowven,

Belgiun.
# INRA, 400 ot s Chappes, B 167, 06003 Sophi Antipel, roce
{cotins.vens, favristo.costa]dca. kulewven.bo

* Department of Computer Scance, KU Leuwon, Calestjnentaan 200A, 3001 Lauven,
Belgaum

N Bteoe 15583 Ch e, e Neherms B
oS Can, 50 705 o, 3 Abstract. We propeee  simple et uffetive sratesy 10 ear rnel
3 uNEsP
Absrac. W conider e flling proble: Given st of dts s e o Paulo State Univarsity, Avenide 24-A. 1515, 13506900 Rio Clao, SP, Brasil
* Dtk o Doy TAEST S ok it Ut Gt oo
0 Rl Pto, SP. Bl
ignifcun ways. Eaic ek bas show . e of e cxsting meods o e e e S
dna and vk dependent Gram. m,.m,. hat can b v by any s
aly.

Abstract. Transposable clements (TES) are DNA soquances hat. can
chaag e location within the genome. They make up g porton
e e et oy s s v Epene of the DNA i culoryotic organiems and contribute to gencic diver-
(o e ot tht e ew et genrlzs nich bt Sve s ity within and acros specie, Thel transpoing mechaiarn may also
=

e e e e R
il datasts.

1 Introduction

e oo euion. Welnroduc  aework o ot T4 wich
o e Leumig

e o ineres SRS AL S
ety of

Further aity. Onee s aallable,

1 Introduction 1] for -

Komeass 2] o
tasks o lt-dimensional scaling 3] for visualization or pre-processng.

s b Pariiona (o non-

Do subets ('clustens”) suchthat nstances wthin the e clustr tend (0 be i e ke 2 oy

T e P S S

e i differcat clusters dissimilar The oo of s cncial beconme mainstream.
e epending on how thi s defined,diffrent solutions will b found. Tis i rve mwhcl i the distance fnetion, althonsh the two asks ke intmately elated
ety can define one notion i terms of the
clustrings 1]
hould o, b 1] el o o g i aflecive e oy v e iy etmpion
on the o be corseet. Since kernelized methods

s e L e e e
prior biss and the true hypothesis has o come from the kernl Functon itscll
Inly 1o use the notion of

(Cloe 1T o e (Chs 1 TEs) eclasiom. TEx ke s
portionofthe DNA i elasotc organims s cot it to senetic diversiy
ustring. Thi e of clustcrin stin s calld s spervsed

At chning, Yo Tl R s 0 S e
‘clustering in the form of constraints that the clustering must fulfill feweni

Most existing 1 for semi-supervised clustering allow the user to provide tation of TES, that agree on the partitioning of the instances according to the target under
cumber of m.‘ucd"”l",ff,,m Fel, m.”f',.“‘ ekcaing o i o b thes aumotations s n mportant step tovards wderstanding thei efects on L T S B
e e el ) e e e i Ve (1] ey b senen and thee ol i genome evoltion [1]. kg ety of s b b el s
g of Inbor. Auto- e e o e s B AR Bl

Iroduced a slightly difernt seting, called “sean-supervised clstering with examp

\_ J
Robert Smith

y | | W,
Robert Smith Bob Smith

r R 4 )

Top-down clustering for protein subfamily Decision Trees for
Hierarchical Multi-label Classification

( 7E)

Tdentifying Proteins Tnvolved in Parasitism by

Discovering Degenerated Motifs identification
o PGost, etn Vers,and HenkBockol™ AR T Y
‘line Vens'2, Etienme Danchin?, farie-Noi "' R
ol Vo', Exenne Dachin, and Mare ol Rass? it e o S PR
et e et SN NS L
P e A T—— i 2k 01 o Pl
o Nl 1 Reshorche Agoomi mm.wﬁ'"m""".mmmn:._ums Er
40 ot e Chapee, B 167 06 St Aol s, Froce ey e Diparmens of Kovledie Technosie, S S nstiaie
T —

(stiemnedanen,rosol ophia. ara- 11 o m.m T e i U Sess. Drerosasige ot

o 2, e e e o et
Abstzact, Hiraschia b choistion (M) i . i of
Ldoifying ot i biokogical sequencs 5 an important chalnge i iy i b oy ok il U
Prn i i he s g e o A . P e
1 irmooucrion o e e Y
o s mh.m..w " ko praoee that. hav 4 Giicon AL e ok o i oy il by e s i T b e
protin kv, Finding i spciic  protcin imsohed i o o e 4t o gt s i o C e (i e preciction for sl s ogeer)
e B i Sl ok Sl Lx e ' pvnche st e e of e st s (o o
et e oo e kT i . Tt approeh s a0 et gl e e
" ou knowlode ll crenly avlale methods st i n pocin T e T a e e ication e Tor e (SC) O, 1 ierachy s
ST S U e B LA B T i woen e hey e ored 1 he B o
A with point sations [1.2) Howeve, i i kv hat conmertion of the o rac, the e el y e s g, Uil
e et (1) Dependin o e ot o b,
e i D e
i+ hah el by, bt oot e o e s
i i i s A e o e e e L 2 wenios oD et o i i M S P bty o
ot i e o i St i don THs e o g o vl e o e e s s sl
o i famiy i, N v oy g We scnparethe tas apgonchn on 24 st s e i
o ot ek = o ety e s e b e e i - itcstion honss MIPS' FuCat (s tctare) i th Gens
tion of amin s v o il popees A R oy (DAG satoe). W s it BN e s 150
P, Gl e o prtels iescn K 10 b6 el 9 » oo duscing EZ Py < " ey v e
ey et e glepy ol L LT L reinatos s o n ke L s
v in tht sstem (gt st) our mthod i bk o iy mots e o e P Dt et HAAD o rm b el o ol
Gt o rqent . o whie it i

gt o I h o by et 3 1t f o) e 3 sl

R bl e iy i i o B R 1 Introduction
e gy i Bt e 2 Clasification rfes to the task of eamin from o st of cssfd imstonces
Femsrs i oS pow e v el that can prdit he chse of previoly esen stones: Heraschal
bache O ol DL b e b egleds Bl e o e et ork oo, st i 3 s e o (IC) difr o ornal o s s s
iy
paraite 1o eatr the plant. ey g

& J G 5 & J
Robert L. Smith B.W. Smith Robert L. W. Smith Bob L. Smith




Generalizing from
example clusters

® Convert example cluster to pairwise constraints?

® Problem: high concentration of constraints in one
part of the space (see Hu et al.,, DS 2013)




Choosing the
clustering approach

® Most work on constraint-based clustering adapts one approach
to incorporate constraints

® But different approaches have very different biases!
® Use constraints to select the most suitable clustering approach!?

® Ongoing work (A.Adam et al.)

[— @ o
— @ v
- @ @
k-means SEREans EM Density-based

metric learning




Modeling languages for
data mining

® |DP3:a system for knowledge
representation and inference

® Can be used for modeling and solving data
mining tasks

® Case study:Analysis of written traditions

. \ Y \ L‘ AN -~ '\v \ v \ Y7 Ay B/ 1 J v -
}.m_\cu,ﬂ L.M‘.tupl NAMNMON. | } B onecker. d.verwer Fredicate 09IC dS d

modeling language: Modeling and solving some machine learning and data

2014 (Accepted)




IDP3

® An environment for knowledge-based programming (Wittocx et
al. 2008)

® Combines imperative and declarative elements
® declarative objects: vocabularies, theories, structures
® (predefined) procedures to
® create and manipulate these objects
® perform inference on them (model expansion, ...)
® Includes a state-of-the-art model generator (ref. ASP competition)

® Uses an extension of first order logic (integers, ...)




Example:
find frequent itemsets

FrequentItemset represents
a set of items

#{t: FrequentItemset C 1} |
>= Freq.



Using a vanilla solver
for data mining

® Will this work? Can a declarative modeling
approach be as efficient as a custom-made
data mining algorithm (e.g., Apriori)?

® With current constraint solving technology:
yes. Plus, can easy model variants of problems
for which no standard algorithm exists!

T. Guns, S. Nijssen, L. De Raedt. [temset mining:A constraint
brogramming perspective. Artificial Intelligence 175(12-13):
1951-1983 (201 1)




Stemmatology

(505 52 D 9 ® Subfield of philology

s v Mh

&, ey
w{,‘lmm ?

Y 33’@”&&&? ® Monks copied manuscripts manually, made

2 88 1 1y
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1058 ety Bt changes -> “evolution” of the story

8 uumv,fﬂ[l’
S oy g

uutcﬁb: Ay mfﬂlm\

® Study relationships between surviving variants
of the story (e.g., to reconstruct a lost
original)

'%&‘ ) e
e ﬂn o : . . . .
! Earmryesyd @ Somewhat similar to phylogenetic trees in

“;i;w‘ .&.H& bioinformatics
30\+m6|,°%‘b9/

® Stemma = “family tree” of a set of manuscripts

ﬁ;“ﬂz&@mﬁ
fﬂ%‘%ﬁﬁ&%@” ® but there are some differences...
/‘I gm rfm.(\‘,mmfh f}h l}tgﬁh
= tm@Wt&u

Foont Tt | ot Fom s Ko e ® solutions specific to stemmatology are
needed




Stemma

r

stemma = connected
DAG with one root
("CRDAG”




Stemma with withesses




The data

® A set of manuscripts, which differ in particular
places

® Each manuscript is described by a fixed set of
attributes

® FEach attribute indicates for a particular position
which variant occurs there

P1 p2 P3
textl has Fred *no”, he said
text2 had he he said no
text3 has he “never”, he said




The task

® The classical task: given the data, hypothesize
a stemma (cf. phylogenetic tree construction)

® But this is not the only task scholars are
interested in

® Here: Given a stemma and a particular position
with multiple variants, is it possible that each
variant originated just once? (and if yes, where
did it originate?)




DAG formulation

® |n a CRDAG with some groups of nodes
defined, complete the groups such that
each group forms a CRDAG itself

solution




How to solve!?

This is a data analysis question for which no existing
method can be readily used - so the data analyst wrote
a program herself

Several versions written; all but the last one found
incorrect on at least one case

“l haven’t been able to find any case where my latest
algorithm won'’t work - but | can’t prove it’s correct
either.” (370 lines of Perl code, excluding graph handling
libraries, excluding 1/O etc.)

So we tried a declarative approach




Terminology

® A source of a variant = document where the variant
first occurred (= parents do not have that variant)

® Problem reduces to:“given a partially labeled DAG,

can you complete the labeling such that each label
has only one source?”




IDP formulation

There are things called “manuscripts”
and things called “variants”
e |
ey ik v A CopiedBy is a binary rglatlonshlp
\ among manuscripts

\ A
1= \\VA.,.—“;‘ 100

F (8" . . . .
s ‘ - Variantln is a function
CopledBY(Manuscript CIDT) y ;
' - Mmapping manuscripts

VariantIn(Manuscript .
to variants

By making SourceOf a function,
“we impose that each variant can
only have one source.

If x is not the source of a
variant y, then x must have a
parent with that variant.




IDP formulation

Checking whether a solution exists =
checking satisfiability of the theory for the given data




IDP formulation

creates
structures




Results

® TJested on five datasets: same results as
earlier procedural implementation, and
slightly faster

® FEasier to write,and provably correct !

® The original implementation turned out to

be incorrect. (First suspicions arose when we noticed

the problem was NP-complete, and the algorithm
polynomial.)




Further steps...

® Many problems were not satisfiable
(stemma + observed variants contradict
one-source hypothesis)

® So, what’s the minimal number of sources
needed to explain the observations for a
particular stemma & attribute!?




IDP formulation

Now, we allow multiple sources per variant
(restriction “one source per variant’ is gone)

x is a source if (and only if) it does not
have a parent with the same variant.

NbOfSources is the number of x for
which IsSource(x) is true

Complete the theory so that
NbOfSources is minimal




Results

® With limited changes to the declarative
specification, this problem gets solved in seconds

® Adapting the procedural program would not be
trivial




IDP3 for Data Analysis

® We experimented with multiple other tasks

® VWe consistently found those tasks relatively
easy to define, and the correctness of their
description easily checked

® |n the one case where we could compare
with a procedural solution, the declarative
solver was as fast as the tailor-made
program




Declarative Data
Analysis

® Some data analysis tasks do not fit existing systems

® Writing a program that correctly addresses the task
can be challenging

® Declarative modeling languages can be an easy, flexible
and efficient solution for such data analysis tasks




Declarative
experimentation

® Basic idea:
® Ask a question about some population
® Let the system answer it
® System may
® use an existing database that is a sample from the population
® collect more data if the existing database is insufficient
® From user’s point of view:
® Query the population instead of the database itself

® Choice of statistical methodology & interpretation of outcome
are moved into the system




Example

ESTIMATE MEAN length
FROM employee
WHERE gender=‘male’ AND nationality= ‘Swedish’ AND haircolor=‘red’

ENSURING CONF=0.95 ANDWIDTH <=5

- population mean, What if a qualitative Can simplify query
not DB mean model of the using the model
- if not enough data,  population is given? (more data available)

collect more

gender nationality ESTIMATE MEAN length

Nl N FROM employee
length hair VWHERE gender="male’ AND nationality= ‘Swedish’

ENSURING CONF=0.95 ANDWIDTH <=5

|G.llsanwmckelen||&I|M.|||Elockeel.| ||I||A| Iquery language for statistical'mference.|

ECMLPKDD-2013 Workshop on languages for ML and DM. + ongoing work




Example

ESTIMATE MEAN length
FROM student

WHERE faculty=‘engineering’
ENSURING CONF=0.95 ANDWIDTH <=5

: ... and we observe: ... and we have
Say, not enough b.Ut e have this 90% male and 10% lots of length
measurements of qualitative model of female among measurements for
“length” among eng. the population... engineers... other students

students...
gender

AT
length faculty

Mean length can be estimated as :
0.9%(MEAN length FROM student WHERE gender=‘male’)
+ 0.1*(MEAN length FROM student WHERE gender=‘female’)




Hypothesis tests

® |nstead of estimation, consider hypothesis tests
® |deally:
® the hypothesis is formulated

® the system chooses an appropriate statistical test (=
assumptions not violated by the data)

® the system tells us what we can conclude about the
hypothesis

® This relieves the user from having to know many hypothesis
tests, their interpretation, their correct usage, ...




® Say, you want to sell more cigarettes

® But you're not allowed to promote tobacco
directly

® Perhaps you can promote something else, hoping
that it will indirectly increase the sales of tobacco!?

® Action rule mining: given some desired outcome,
learn rules that tell you what to do to achieve that
outcome




Association rules

® Association rules:“people who bought ...
also bought ...”

® | ots of research on finding such rules

® Can you use them for action rule mining?
E.g.:if X and Y are often bought together,
promote X to sell more Y?




Example

® Association rule:

IF bread & cheese THEN wine (14%)

® Suppose wine is bought by 6% of total
population, but 14% of B&C subpopulation; then
this rule tells us: people who buy bread & cheese
are more likely to buy wine

® So can we sell more wine by promoting cheese?




Incorrect causal
Interpretations

Association rules do not necessarily indicate causal relationships!

Much work on action rules assumes that association rules indicate
causal relationships

Similar problem with “What-if analysis” in predictive modeling

® “If we increase the value assigned to input variable X, our
model predicts a lower Y”

® Danger of causal interpretation: “our model says that if we
increase X, Y will decrease”, rather than “if X, had been higher,
Y would likely have been lower”

“Correlation # causation’: the eternal pitfall !




Setting: ‘cost-effective
action mining”’

® Ve are given:

® A set of attributes A; with domains D,, and cost
functions Ci: D, X D; & R

® A “target attribute” T with domain Dt and profit
function P: V = R

® An action A is a set of externally induced changes
ai—a; of attribute values (“interventions”)

® The cost of an action is the sum of the costs of the
changes: C(A) = 2 si~aijea Ci(a;, a))




® Changing one attribute may have an effect on other
attributes or on the target

® |ett be the original (pre-action) value of the target,and t’
the new value

® The profit of an action A is P(t))-P(t)
® The net profit of A is NP(A)=P(t")-P(t)-C(A)

® this assumes t’ is known

e The expected net profit of A is ENP(A)=E(P(t))-P(t)-C(A)

® t’ not known




Action (rule) mining

® Given the C; and P functions and a dataset D
C Dlx...anxDT

® Find:

® For a given instance X, the action with
highest ENP [“action mining”, transductive]

® A set of rules that predict for any instance
x the action with highest ENP [“action rule

mining”, inductive]




Is it straightforward!?

Fred has high service

: level, high rate;

Service :
can we make him

/ IM N more loyal?

Sex 0.1 Rate

F/ \M L/ \H

0.9 0.2 0.8 0.5

(inspired by Yang et al., ICDM 2003)




Is it straightforward!?

IF bread & cheese THEN wine

® Suppose many people buy bread, but few
buy cheese; and we want to sell more wine

(high profit). Can we achieve that by giving
them cheese for free?




It is not straightforward

® The real question is: will changing a value
cause the target value to change!

® Causal information is necessary!
® Existing methods implicitly assume
® cach A causally affects T

® no A causally affects any A;, j#i




plans for dinner

A

bread cheese wine

plans for dinner

-

bread cheese wine

Setting |:
dinner plans affect
bought products

Setting 2:
promotion affects
dinner plans




Incorporating causal
information

® (Causal information can be represented as a
causal network

® (Case |:causal network is available

® (Case 2:causal network is not available




Case |: CREAM

® “Causal-Relationships-based Economical Action
Mining” (CREAM)

® Given a causal network, and an action A, we can
compute ENP(A) (standard inference)

® Find the action that maximizes ENP

® CREAM uses a straightforward approach: try many
different actions, see how they affect target

action mining. Intelllgent DataAnaIyS|s I7(6) 1075-1091 (2013)




Case 2: no causal
information

® CREAM assume a causal network is given
® Often, this is not the case
® Can we learn the causal network from the data?

® Classic view in statistics: only from experimental studies,
not from observational ones (correlation # causation)

® Pearl (1990-...): In some cases (and under mild
assumptions), we can determine causal relationships from
observations!

® Recent results (Scholkopf et al.,2010-...) broaden the
conditions under which causality can be determined




Inferring causation: the
basic idea

Suppose there is evidence that A and B are directly
dependent, and B and C too, but no direct connection
between A and C (could be based on pre-existing
knowledge, or observations of dependencies)

A—B-a(
A=B<_C
A B G A—B—C

A2Be_C

No direct link between
A and C; all information 4 different causal
flow goes through B connections possible




Inferring causation: the
basic idea

Find a number of cases with the same value for B...

A—B—C AR

- A and C correlate - A and C correlate
- Fixing B removes correlation - Fixing B removes correlation

Ac-B->C A-2Be C

- A and C correlate - A and C do not correlate
- Fixing B removes correlation - Fixing B introduces correlation




Causality among 2
variables

® Even among 2 variables, causality can be
determined if noise is present (intuitively,
the noise is “the third variable”)

® Series of recent work by Max Planck,
Tubingen (Scholkopf, Janzing, ...)




Partial causal networks

® For some edges in a network, the direction
can be determined; for others it cannot

® This gives only partial causal information

What is the effect of A on T?




® The question cannot be answered with certainty:
not enough information

® (Ugly) solution: make different guesses of the
complete network, perform inference in these,
combine results.

~C G—T C
\D/E\F A BT\D>E<F
i /7C G—T o L/C G—T
A B\D>E<F A B\D>E<F




ICE-CREAM

® “|C-enabled CREAM”

® Run IC (“Inductive Causation”,Verma & Pearl, 1991) to derive
a partial causal network

® For any action A, estimate ENP(A) as follows:

® repeat n times:

® create a random complete network CN consistent with
the partial one

® compute ENP for CN using CREAM

® return the average of all ENPs thus computed




Experiments

® Experiments on some “real” (pre-existing) and
artificial (created for this purpose) datasets

® For all these datasets, we know the real causal model

® Thus, we can compare:

method

methoC

method

st

st

St

networ

<(

nat ignore causality (e.g., Yang et al.'s)
nat use the causal network (CREAM)

nat use the estimated, partial causal

CE-CREAM)




Results

Average ENP of actions suggested by the method:

CREAM(ES) | CREAM(GS) | ICE-CREAM(ES) | ICE-CREAM(GS)
ChestClinic




Causality &
action rule mining

Traditional methods for action rule mining make strong
assumptions about causality

Trying to determine the actual causal relationships (IC)
and taking these into account (CREAM) gives better
results

Overall conclusion: be cautious with causal interpretation
of predictive models

Declarative data mining could guard against this, if a
“causality-aware” language is used




® “Declarative data mining” has the potential
of making data analysis easier, more efficient,
more accurate and less error-prone

® Research on inductive databases,
constraint-based data mining, meta-learning,
declarative knowledge representation is
highly relevant for achieving this goal
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