Declarative data analysis

Hendrik Blockeel

KU Leuven

Motivation

• Data analysis:

. . .

- studied in machine learning, data mining, statistics
- Thousands of tools, methods, algorithms,
- Millions of (slightly) different kinds of tasks
- How can a data analyst choose optimally?

Tasks & methods

Variety in tasks

- Categories: Classification, regression, clustering, association rules, reinforcement learning, ...
- Within each category:
 - semi-supervised; multi-label; multi-instance; ... classification
 - learning from i.i.d. data, trees, sequences, graphs, ...
 - transfer learning

• • • •

- different target criteria (e.g. for clustering)
- exploiting background knowledge
- constraints imposed on solutions

Variety in tools

- E.g., classification: decision trees, rules, random forests, SVM, Naive Bayes, logistic regression, ...
- E.g., clustering: k-means, EM, single linkage, spectral clustering, ...
- They all have their own bias
- Which one to use for a particular task? How to set the parameters?

- The best way to address this variety of tasks is to make it possible for the user to describe the task, not the approach
- This is the basic mantra of declarative programming

Compare to SQL

- SQL was a huge leap forward for databases
- Before SQL: program the retrieval procedure yourself
- With SQL: formulate the question in domain terminology; database system determines optimal execution strategy
- SQL made retrieval easier and more efficient
- Data mining is still at the "pre-SQL" stage

Motivation, part 2: correctness

- It is easy to use data mining tools incorrectly, or interpret their results incorrectly
- This holds even for basic statistical methods!

Experimental evaluation in machine learning

- Researchers propose new methods, and experimentally evaluate them
- Very often, statistical significance tests are used to show "significant" improvements
- These tests are often used incorrectly
 - See, e.g., Dietterich 1998; Demsar 2006; ...
 - The more advanced statistical tests become, the less users understand them, and the higher the risk of mistakes
 - E.g., independence assumptions often violated

Example: crossvalidation

- Standard deviations reported in a cross-validation = ?
 - stdev of individual fold estimates?
 - deviation of estimated accuracy from true accuracy?
- Bengio & Grandvalet, 2004: no unbiased estimate of variance of CV
- So, whatever these stdevs are, they are not the ones we want
- Hence, P-values, significance tests, ... make no sense!

	Method A	Method B	Method C	
Dataset 1	0.86 (0.02)	0.83 (0.01)	0.82 (0.01)	← acc (stdev)
Dataset 2	0.85 (0.01)	0.91 (0.01)	0.82 (0.03)	

Statistics is tricky

- There are many subtle issues in statistics
- Personal opinion: We should not leave computation & interpretation of statistics to the user
- Ideally, build it into the system

Data analysis as it is now

Data analysis as it should be

Steps towards declarative data analysis

- Relevant fields:
 - Inductive databases
 - Query languages for data mining
 - Modeling languages for data mining (2010-)
 - Constraint-based data mining
 - Meta-learning
 - Evaluation procedures

This talk

- This talk: some illustrations of
 - declarative query languages for data mining
 - declarative modeling languages for DM
 - declarative statistical inference
 - subleties in interpretation of DM results

A declarative language for clustering

 An example of integrating "clustering queries" into database languages

Ongoing work

A.Adam, H. Blockeel, S. Govers, A.Aertsen (2013). SCCQL: A constraint-based clustering system. ECMLPKDD 2013 demo. Proc. of ECMLPKDD 2013 part 3: 681-684.

SCCQL							
				Id	Mutant	LengthMean	WidthMean
				1	0		
				2	0		
Kel.				3	0		
DR				4	1		
				5	1		
				6	1		

CLUSTER LengthMean, WidthMean FROM (SELECT c.Id, I.Mutant, AVG(s.Length) AS LengthMean, AVG(s.Width) AS WidthMean FROM stateovertime s, cell c, lineage I WHERE I.ExperimentId=5 AND c.LineageId = I.Id AND s.CellId = c.Id GROUP BY c.id) AS data WITH SOFT MUST LINK WHERE data.Mutant=0 BY Mutant

Cluster according to mean length & width, using as soft constraint that all "Mutant 0" should be in one cluster.

Subquery defines the data to be clustered.

Constraint-based clustering

- Difficult for user: choose clustering algorithm, distance metric, parameters
- Often easier: show pairs of instances that "must/ cannot link", or show example clusters
- This motivates constraint-based clustering
 - Pairwise constraints: multiple approaches
 - Whole clusters as examples

Pan Hu, Celine Vens, Bart Verstrynge, Hendrik Blockeel. Generalizing from Example Clusters. Discovery Science 2013: 64-78

(Slide by Celine Vens) EXAMPLE APPLICATION: ENTITY RESOLUTION

<section-header><section-header><text><text><text><text><text><text><text></text></text></text></text></text></text></text></section-header></section-header>	<section-header><section-header><text><footnote><footnote><footnote><text><text></text></text></footnote></footnote></footnote></text></section-header></section-header>	<section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header>
Robert Smith	Bob Smith	R. W. Smith Robert Smith
<section-header><section-header><section-header><text><text><text><text><text><text></text></text></text></text></text></text></section-header></section-header></section-header>	<page-header><page-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></page-header></page-header>	Image: State of the state
Robert L. Smith	B.W. Smith	Robert L. W. Smith Bob L. Smith

(Slide by Celine Vens)

ENTITY RESOLUTION

<section-header><section-header><section-header><text><text><text><text><text><text></text></text></text></text></text></text></section-header></section-header></section-header>	<section-header><section-header><text><footnote><footnote><footnote><text><text><text></text></text></text></footnote></footnote></footnote></text></section-header></section-header>	<section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header>	<text><text><text><text><section-header><text><text><text><text><text></text></text></text></text></text></section-header></text></text></text></text>			
Robert Smith	Bob Smith	R. W. Smith	Robert Smith			
<section-header><section-header><section-header><text><text><text><text><text><text><text></text></text></text></text></text></text></text></section-header></section-header></section-header>	<page-header><page-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></page-header></page-header>	<section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header>	<section-header><section-header><section-header><section-header><text><text><text></text></text></text></section-header></section-header></section-header></section-header>			
Robert L. Smith	B.W. Smith	Robert L. W. Smith	Bob L. Smith			
Example clusters are easy to provide (complete publication list of one author)						

(Slide by Celine Vens)

ENTITY RESOLUTION

Generalizing from example clusters

- Convert example cluster to pairwise constraints?
- Problem: high concentration of constraints in one part of the space (see Hu et al., DS 2013)

Choosing the clustering approach

- Most work on constraint-based clustering adapts one approach to incorporate constraints
- But different approaches have very different biases!
- Use constraints to select the most suitable clustering approach?
- Ongoing work (A.Adam et al.)

Modeling languages for data mining

- IDP3: a system for knowledge representation and inference
- Can be used for modeling and solving data mining tasks
- Case study: Analysis of written traditions

M. Bruynooghe, H. Blockeel, B. Bogaerts, B. De Cat, S. De Pooter, J. Jansen, A. Labarre, J. Ramon, M. Denecker, S. Verwer. *Predicate logic as a modeling language: Modeling and solving some machine learning and data mining problems with IDP3*. Theory and Practice of Logic Programming, 2014 (Accepted)

IDP3

- An environment for knowledge-based programming (Wittocx et al. 2008)
- Combines imperative and declarative elements
 - declarative objects: vocabularies, theories, structures
 - (predefined) procedures to
 - create and manipulate these objects
 - perform inference on them (model expansion, ...)
- Includes a state-of-the-art model generator (ref.ASP competition)
- Uses an extension of first order logic (integers, ...)

Example: find frequent itemsets

Using a vanilla solver for data mining

- Will this work? Can a declarative modeling approach be as efficient as a custom-made data mining algorithm (e.g., Apriori)?
- With current constraint solving technology: yes. Plus, can easy model variants of problems for which no standard algorithm exists!

T. Guns, S. Nijssen, L. De Raedt. *Itemset mining: A constraint programming perspective*. Artificial Intelligence 175(12-13): 1951-1983 (2011)

Stemmatology

Subfield of philology

- Monks copied manuscripts manually, made changes -> "evolution" of the story
- Study relationships between surviving variants of the story (e.g., to reconstruct a lost original)
- Stemma = "family tree" of a set of manuscripts
- Somewhat similar to phylogenetic trees in bioinformatics
 - but there are some differences...
 - solutions specific to stemmatology are needed

Stemma with witnesses

The data

- A set of manuscripts, which differ in particular places
- Each manuscript is described by a fixed set of attributes
- Each attribute indicates for a particular position which variant occurs there

	P1	P2	P3	•••
text1	has	Fred	"no", he said	•••
text2	had	he	he said no	•••
text3	has	he	"never", he said	•••

The task

- The classical task: given the data, hypothesize a stemma (cf. phylogenetic tree construction)
- But this is not the only task scholars are interested in
- Here: Given a stemma and a particular position with multiple variants, is it possible that each variant originated just once? (and if yes, where did it originate?)

DAG formulation

 In a CRDAG with some groups of nodes defined, complete the groups such that each group forms a CRDAG itself

How to solve?

- This is a data analysis question for which no existing method can be readily used - so the data analyst wrote a program herself
- Several versions written; all but the last one found incorrect on at least one case
- "I haven't been able to find any case where my latest algorithm won't work - but I can't prove it's correct either." (370 lines of Perl code, excluding graph handling libraries, excluding I/O etc.)
- So we tried a declarative approach

Terminology

- A source of a variant = document where the variant first occurred (= parents do not have that variant)
- Problem reduces to: "given a partially labeled DAG, can you complete the labeling such that each label has only one source?"

IDP formulation

/* ----- Knowledge base ----vocabulary V { type Manuscript type Variant CopiedBy(Manuscript,Manuscript) VariantIn(Manuscript): Variant

```
vocabulary Vsrc {
extern vocabulary V
SourceOf(Variant): Manuscript
```

theory Tsrc : Vsrc { ! x : (x ~= SourceOf(VariantIn(x))) => ? y: CopiedBy(y,x) & VariantIn(y) = VariantIn(x).

There are things called "manuscripts" and things called "variants"

CopiedBy is a binary relationship among manuscripts

> Variantln is a function mapping manuscripts to variants

By making SourceOf a function, we impose that each variant can only have one source.

> If x is not the source of a variant y, then x must have a parent with that variant.
IDP formulation

/* ----- Check whether sample fits stemma ----- */ procedure check(sample) { idpintern.setvocabulary(sample,Vsrc) return sat(Tsrc,sample)

Checking whether a solution exists = checking satisfiability of the theory for the given data

IDP formulation

procedure main() {
 process("besoin")
 process("parzival")
 process("florilegium")
 process("sermon158")
 process("heinrichi")

/* ------ Procedures for processing ------ */
procedure process(name) {
 io.write("Processing ",name,".\n")
 local path = "data/"
 local stemmafilename = path..name..".dot"
 local samplefilename = path..name..".json"
 processFiles(stemmafilename,samplefilename)

procedure processFiles(stemmafilename,samplefilename) {
 local stemma,nbnodes,nbedges = readStemma(stemmafilename)
 io.write("Stemma has ",nbnodes," nodes and ",nbedges, " edges.\n")
 local nbp,nbs,time = processSamples(stemma,samplefilename)
 io.write("Found ",nbp," positive out of ",nbs," groupings ")
 io.write("in ",time," sec.\n")

procedure readStemma(stemmafilename) { ... }
procedure processSamples(stemma,samplefilename) { ... }

creates structures

Results

- Tested on five datasets: same results as earlier procedural implementation, and slightly faster
- Easier to write, and provably correct !
- The original implementation turned out to be incorrect. (First suspicions arose when we noticed the problem was NP-complete, and the algorithm polynomial.)

Further steps...

- Many problems were not satisfiable (stemma + observed variants contradict one-source hypothesis)
- So, what's the minimal number of sources needed to explain the observations for a particular stemma & attribute?

IDP formulation

vocabulary V { ... } vocabulary Vms { extern vocabulary V IsSource(Manuscript)

theory Tms : Vms {
 { !x: IsSource(x) <- ~?y: CopiedBy(y,x) & VariantIn(y)=VariantIn(x). }</pre>

term NbOfSources : Vms {
 #{x:IsSource(x)}

procedure minSources(sample) {
 idpintern.setvocabulary(sample,Vms)
 return minimize(Tms, sample, NbOfSources)[1]

Now, we allow multiple sources per variant (restriction "one source per variant" is gone)

> x is a source if (and only if) it does not have a parent with the same variant.

> > NbOfSources is the number of x for which IsSource(x) is true

> > > Complete the theory so that NbOfSources is minimal

Results

- With limited changes to the declarative specification, this problem gets solved in seconds
- Adapting the procedural program would not be trivial

```
Processing besoin.

Stemma has 13 nodes and 13 edges.

IsSource = { T2; U }

IsSource = { C; T2 }

IsSource = { D; J; L; M; T2; U; V }

...

IsSource = { B; F; J; T2 }

Minimized for 44 groupings in 0 sec.
```

IDP3 for Data Analysis

- We experimented with multiple other tasks
- We consistently found those tasks relatively easy to define, and the correctness of their description easily checked
- In the one case where we could compare with a procedural solution, the declarative solver was as fast as the tailor-made program

Declarative Data Analysis

- Some data analysis tasks do not fit existing systems
- Writing a program that correctly addresses the task can be challenging
- Declarative modeling languages can be an easy, flexible and efficient solution for such data analysis tasks

Declarative experimentation

- Basic idea:
 - Ask a question about some population
 - Let the system answer it
- System may
 - use an existing database that is a sample from the population
 - collect more data if the existing database is insufficient
- From user's point of view:
 - Query the *population* instead of the database itself
 - Choice of statistical methodology & interpretation of outcome are moved into the system

Example

ESTIMATE MEAN length FROM employee WHERE gender='male' AND nationality= 'Swedish' AND haircolor= 'red' ENSURING CONF=0.95 AND WIDTH <= 5

population mean,
not DB mean
if not enough data,
collect more

What if a qualitative model of the population is given?

gender nationality

length

hair

Can simplify query using the model (more data available)

ESTIMATE MEAN length FROM employee WHERE gender='male' AND nationality= 'Swedish' ENSURING CONF=0.95 AND WIDTH <= 5

G.Vanwinckelen & H. Blockeel. A query language for statistical inference. ECMLPKDD-2013 Workshop on languages for ML and DM.

+ ongoing work

Example

ESTIMATE MEAN length FROM student WHERE faculty='engineering' ENSURING CONF=0.95 AND WIDTH <= 5

Say, not enough measurements of "length" among eng. students... ... but we have this qualitative model of the population...

gender length faculty

... and we observe: 90% male and 10% female among engineers... ... and we have lots of length measurements for other students

Mean length can be estimated as : 0.9*(MEAN length FROM student WHERE gender='male') + 0.1*(MEAN length FROM student WHERE gender='female')

Hypothesis tests

- Instead of estimation, consider hypothesis tests
- Ideally:
 - the hypothesis is formulated
 - the system chooses an appropriate statistical test (= assumptions not violated by the data)
 - the system tells us what we can conclude about the hypothesis
- This relieves the user from having to know many hypothesis tests, their interpretation, their correct usage, ...

Finding "action rules"

- Say, you want to sell more cigarettes
- But you're not allowed to promote tobacco directly
- Perhaps you can promote something else, hoping that it will indirectly increase the sales of tobacco?
- Action rule mining: given some desired outcome, learn rules that tell you what to do to achieve that outcome

Association rules

- Association rules: "people who bought ... also bought ..."
- Lots of research on finding such rules
- Can you use them for action rule mining?
 E.g.: if X and Y are often bought together, promote X to sell more Y?

• Association rule:

IF bread & cheese THEN wine (14%)

- Suppose wine is bought by 6% of total population, but 14% of B&C subpopulation; then this rule tells us: people who buy bread & cheese are more likely to buy wine
- So can we sell more wine by promoting cheese?

Incorrect causal interpretations

- Association rules do not necessarily indicate causal relationships!
- Much work on action rules assumes that association rules indicate causal relationships
- Similar problem with "What-if analysis" in predictive modeling
 - "If we increase the value assigned to input variable X₄, our model predicts a lower Y"
 - Danger of causal interpretation: "our model says that if we increase X₄, Y will decrease", rather than "if X₄ had been higher, Y would likely have been lower"
- "Correlation \neq causation": the eternal pitfall !

Setting: "cost-effective action mining"

- We are given:
 - A set of attributes A_i with domains D_i , and cost functions $C_i: D_i \times D_i \rightarrow \mathbb{R}$
 - A "target attribute" T with domain D_T and profit function P: V $\rightarrow \mathbb{R}$
- An <u>action</u> A is a set of externally induced changes $a_i \rightarrow a_i$ of attribute values ("interventions")
- The <u>cost</u> of an action is the sum of the costs of the changes: $C(A) = \sum_{(ai \rightarrow ai') \in A} C_i(a_i, a_i')$

• Changing one attribute may have an effect on other attributes or on the target

- Let *t* be the original (pre-action) value of the target, and *t*' the new value
- The profit of an action A is P(t')-P(t)
- The <u>net profit</u> of A is NP(A)=P(t)-P(t)-C(A)
 - this assumes t' is known
- The expected net profit of A is ENP(A) = E(P(t')) P(t) C(A)
 - t' not known

Action (rule) mining

- Given the C_i and P functions and a dataset D $\subseteq D_1 \times ... \times D_n \times D_T$
- Find:
 - For a given instance x, the action with highest ENP ["action mining", transductive]
 - A set of rules that predict for any instance x the action with highest ENP ["action rule mining", inductive]

Is it straightforward?

Fred has high service level, high rate; can we make him more loyal?

(inspired by Yang et al., ICDM 2003)

Is it straightforward?

IF bread & cheese THEN wine

 Suppose many people buy bread, but few buy cheese; and we want to sell more wine (high profit). Can we achieve that by giving them cheese for free?

It is not straightforward

- The real question is: will changing a value cause the target value to change?
- Causal information is necessary!
- Existing methods implicitly assume
 - each A_i causally affects T
 - no A_i causally affects any A_j , $j \neq i$

Setting I: dinner plans affect bought products

Setting 2: promotion affects dinner plans

Incorporating causal information

- Causal information can be represented as a causal network
- Case I: causal network is available
- Case 2: causal network is not available

Case I: CREAM

- "Causal-Relationships-based Economical Action Mining" (CREAM)
- Given a causal network, and an action A, we can compute ENP(A) (standard inference)
- Find the action that maximizes ENP
- CREAM uses a straightforward approach: try many different actions, see how they affect target

P. Shamsinejadbabaki, M. Saraee, H. Blockeel: *Causality-based cost-effective action mining*. Intelligent Data Analysis 17(6): 1075-1091 (2013)

Case 2: no causal information

- CREAM assume a causal network is given
- Often, this is not the case
- Can we *learn* the causal network from the data?
 - Classic view in statistics: only from experimental studies, not from observational ones (correlation ≠ causation)
 - Pearl (1990-...): In some cases (and under mild assumptions), we *can* determine causal relationships from observations!
 - Recent results (Schölkopf et al., 2010-...) broaden the conditions under which causality can be determined

Inferring causation: the basic idea

Suppose there is evidence that A and B are directly dependent, and B and C too, but no direct connection between A and C (could be based on pre-existing knowledge, or observations of dependencies)

No direct link between A and C; all information flow goes through B

$$A \longrightarrow B \longrightarrow C$$
$$A \longleftarrow B \longleftarrow C$$
$$A \longleftarrow B \longrightarrow C$$
$$A \longrightarrow B \longleftarrow C$$

4 different causal connections possible

Inferring causation: the basic idea

Find a number of cases with the same value for B...

 $A \rightarrow B \rightarrow C$

- A and C correlate - Fixing B removes correlation

A←B→C

- A and C correlate - Fixing B removes correlation

A←B←C

- A and C correlate - Fixing B removes correlation

 $A \rightarrow B \leftarrow C$

- A and C *do not* correlate - Fixing B introduces correlation

Causality among 2 variables

- Even among 2 variables, causality can be determined if noise is present (intuitively, the noise is "the third variable")
- Series of recent work by Max Planck, Tübingen (Schölkopf, Janzing, ...)

Partial causal networks

- For some edges in a network, the direction can be determined; for others it cannot
- This gives only partial causal information

What is the effect of A on T?

The question cannot be answered with certainty: not enough information

• (Ugly) solution: make different guesses of the complete network, perform inference in these, combine results.

ICE-CREAM

- "IC-enabled CREAM"
- Run IC ("Inductive Causation", Verma & Pearl, 1991) to derive a partial causal network
- For any action A, estimate ENP(A) as follows:
 - repeat n times:
 - create a random complete network CN consistent with the partial one
 - compute ENP for CN using CREAM
 - return the average of all ENPs thus computed

Experiments

- Experiments on some "real" (pre-existing) and artificial (created for this purpose) datasets
- For all these datasets, we know the real causal model
- Thus, we can compare:
 - methods that ignore causality (e.g., Yang et al.'s)
 - methods that use the causal network (CREAM)
 - methods that use the estimated, partial causal network (ICE-CREAM)

Results

Average ENP of actions suggested by the method:

Network	CREAM(ES)	CREAM(GS)	ICE-CREAM(ES)	ICE-CREAM(GS)	Yang
ChestClinic	0.58	0.58	0.49	0.49	0.41
Fire	0.81	0.81	0.81	0.81	0.80
usa2000	0.75	0.71	0.66	0.59	0.56
Headache *	0.73	0.72	0.71	0.71	0.22
Alarm *	0.56	0.56	0.54	0.54	0.11
Hailfinder *	0.89	0.90	0.80	0.79	0.63
sample7	0.35	0.35	0.34	0.34	0.25
sample15 *	0.39	0.39	0.36	0.36	0.23
sample30 *	0.35	0.37	0.28	0.30	0.14
sample 45 $*$	0.40	0.39	0.35	0.34	0.17

Causality & action rule mining

- Traditional methods for action rule mining make strong assumptions about causality
- Trying to determine the actual causal relationships (IC) and taking these into account (CREAM) gives better results
- Overall conclusion: be cautious with causal interpretation of predictive models
- Declarative data mining could guard against this, if a "causality-aware" language is used

Conclusions

- "Declarative data mining" has the potential of making data analysis easier, more efficient, more accurate and less error-prone
- Research on inductive databases, constraint-based data mining, meta-learning, declarative knowledge representation is highly relevant for achieving this goal
Many thanks to...

- Antoine Adam
- Tara Andrews
- Sander Beckers
- Maurice Bruynooghe
- Marc Denecker
- Luc De Raedt
- Tias Guns
- Pan Hu

- Caroline Macé
- Wannes Meert
- Siegfried Nijssen
- Pirooz Shamsinejadbabaki
- Joaquin Vanschoren
- Gitte Vanwickelen
- Joost Vennekens
- Celine Vens